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Chapter 1

Vectors field

Opening problem:

Hurricanes are huge storms that can produce tremendous amounts of
damage to life and property, especially when they reach land. Predicting
where and when they will strike and how strong the winds will be is of great
importance for preparing for protection or evacuation. Scientists rely on
studies of rotational vector fields for their forecasts. Shown in Figure 1.1

Figure 1.1:

is Cyclone Catarina in the South Atlantic Ocean in 2004, as seen from the
International Space Station.

These applications are based on the concept of a vector field, which we
explore in this chapter. Vector fields have many applications because they
can be used to model real fields such as electromagnetic or gravitational
fields. A deep understanding of physics or engineering is impossible without
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4 CHAPTER 1. VECTORS FIELD

an understanding of vector fields. Furthermore, vector fields have mathe-
matical properties that are worthy of study in their own right. In particular,
vector fields can be used to develop several higher-dimensional versions of
the Fundamental Theorem of Calculus.

1.1 Vectors Fields in Space

Examples of vector fields. How can we model the gravitational force ex-
erted by multiple astronomical objects? How can we model the velocity of
water particles on the surface of a river? Figure 1.2 gives visual representa-
tions of such phenomena. 1.2 a shows a gravitational field exerted by two

Figure 1.2:

astronomical objects, such as a star and a planet or a planet and a moon.
At any point in the figure, the vector associated with a point gives the net
gravitational force exerted by the two objects on an object of unit mass. The
vectors of largest magnitude in the figure are the vectors closest to the larger
object. The larger object has greater mass, so it exerts a gravitational force
of greater magnitude than the smaller object.

Figure 1.2b shows the velocity of a river at points on its surface. The
vector associated with a given point on the river’s surface gives the velocity
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of the water at that point. Since the vectors to the left of the figure are small
in magnitude, the water is flowing slowly on that part of the surface. As the
water moves from left to right, it encounters some rapids around a rock. The
speed of the water increases, and a whirlpool occurs in part of the rapids.

Each figure illustrates an example of a vector field.

Definition 1.1.1. A vector field in R3 is a function that assigns to each
point (x, y, z) a vector in space ~F = ~F (x, y, x) . The standard notation for

the ~F function is:

~F (x, y, z) = M(x, y, z)~i+N(x, y, z)~j + P (x, y, z)~k,

where M , N and P are differentiable scalar functions.

Example 1.1.1. Sketch each of the following vector field ~F (x, y, z) = 2x~i−
2y~j − 2x~k .

We made the sketching in Mathematica.

Figure 1.3:

Example 1.1.2. Vector field ~v = 4|x|~i + ~j models the velocity of water on
the surface of a river. What is the speed of the water at point A(2, 3)? Use
meters per second as the units.
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The vector field ~v at A(2, 3) will be ~vA = 8~i+~j . The speed of the water
at this point is the magnitude of this vector, i.e., speed = |~vA| =

√
82 + 12 =√

65 = 8.06m/s .

Describing a Gravitational Vector Field.

Newton’s law of gravitation states that ~F = −Gm1m2

r2
~r where G is the

universal gravitational constant. It describes the gravitational field exerted
by an object (object 1) of mass m1 located at the origin on another object

of mass m2 located at point (x, y, z). Field ~F denotes the gravitational force
that object 1 exerts on object 2, r is the distance between two objects, and
~r indicates the unit vector from the first object to the second. The minus
sign shows that the gravitational force attracts toward the origin; that is, the
force of object 1 is attractive. We will sketch the vector field associated with
this equation.

We locate the object 1 in the origin. Now the distance between ob-
ject 1 and object 2 is r =

√
x2 + y2 + z2, and the unit vector is ~r =

1√
x2+y2+z2

(
x~i+ y~j + z~k

)
. Therefor the gravitational vector field is:

~F = −Gm1m2

r2
~r = −Gm1m2

r2

(x
r
~i+

y

r
~j +

z

r
~k
)

= −Gm1m2

r3

(
x~i+ y~j + z~k

)
.

(1.1)
On the Figure 1.4 the gravitational vector field is given, sketched in

Mathematica. Note that the magnitudes of the vectors increase as the vec-
tors get closer to the origin.

Example 1.1.3. The mass of asteroid 1 is 750, 000 kg and the mass of
asteroid 2 is 130, 000kg. Assume asteroid 1 is located at the origin, and
asteroid 2 is located at (15,−5, 10) , measured in units of 10 to the eighth
power kilometers. Given that the universal gravitational constant is G =
6.67384× 10−11m3kg−1s−2, find the gravitational force vector that asteroid 1
exerts on asteroid 2.

Gradient Vector Field. On of the ”famous” vector field for a scalar
function f is its gradient vector field,

∇f =
∂f

∂x
~i+

∂f

∂y
~j +

∂f

∂z
~k . (1.2)

These vector fields are extremely important in physics because they can be
used to model physical systems in which energy is conserved. Gravitational
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Figure 1.4:

fields and electric fields associated with a static charge are examples of gra-
dient fields.

Example 1.1.4. Find the gradient vector field for the function f(x, y, z) =
ze−xy .

Using (1.2) we have:

∇f =
∂f

∂x
~i+

∂f

∂y
~j +

∂f

∂z
~k = −yze−xy~i+−xze−xy~j + e−xy~k .

Divergence and Curl
In this section, we examine two important operations on a vector field:

divergence and curl. They are important to the field of calculus for several
reasons, including the use of curl and divergence to develop some higher-
dimensional versions of the Fundamental Theorem of Calculus. In addition,
curl and divergence appear in mathematical descriptions of fluid mechan-
ics, electromagnetism, and elasticity theory, which are important concepts in
physics and engineering. We can also apply curl and divergence to other con-
cepts we already explored. For example, under certain conditions, a vector
field is conservative if and only if its curl is zero.

Divergence is an operation on a vector field that tells us how the field
behaves toward or away from a point. For example, If ~F represents the
velocity of a fluid, then the divergence of ~F at point P measures the net rate
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of change with respect to time of the amount of fluid flowing away from P (the
tendency of the fluid to flow ”out of” P ). In particular, if the amount of fluid
flowing into P is the same as the amount flowing out, then the divergence at
P is zero.

One application for divergence occurs in physics, when working with mag-
netic fields. Physicists use divergence in Gauss’s law for magnetism which
states that if ~B is a magnetic field, then its divergence is zero.

The second operation on a vector field that we examine is the curl, which
measures the extent of rotation of the field about a point. In other words,
the curl at a point is a measure of the vector field’s ”spin” at a point.

Definition 1.1.2. Let ~F (x, y, z) = M(x, y, z)~i+N(x, y, z)~j + P (x, y, z)~k be
a vector field, where M,N and P are differential functions. The divergence
of ~F is the scalar function

div~F =
∂M

∂x
+
∂N

∂y
+
∂P

∂z
,

and curl of ~F is the vector field

curl~F =

(
∂P

∂y
− ∂N

∂z

)
~i+

(
∂M

∂z
− ∂P

∂x

)
~j +

(
∂N

∂x
− ∂M

∂y

)
~k .

We define an operator ∇ with

∇ =
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k .

Note that the divergence of ~F is the dot product of ∇ and ~F :

div~F =
∂M

∂x
+
∂N

∂y
+
∂P

∂z
=

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
· (M~i+N~j+P~k) = ∇· ~F .

The curl of ~F is vector product of ∇ and ~F : ,

curl~F =

(
∂P

∂y
− ∂N

∂z

)
~i+

(
∂M

∂z
− ∂P

∂x

)
~j +

(
∂N

∂x
− ∂M

∂y

)
~k

=

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
× (M~i+N~j + P~k) = ∇× ~F .
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Example 1.1.5. Find the Divergence and Curl of the vector field ~F (x, y, z) =

x2y~i+ xyz~j + (y2 + z2)~k .

We have:

div~F = ∇ · ~F

=

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
· (x2y~i+ xyz~j + (y2 + z2)~k)

=
∂

∂x
(x2y) +

∂

∂y
(xyz) +

∂

∂z
(y2 + z2)

= 2xy + xz + 2z .

curl~F = ∇× ~F

=

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
×
(
x2y~i+ xyz~j + (y2 + z2)~k

)
=

[
∂

∂y
(y2 + z2)− ∂

∂z
(xyz)

]
~i−

[
∂

∂x
(y2 + z2)− ∂

∂z
(x2y)

]
~j +

+

[
∂

∂x
(xyz)− ∂

∂y
(x2y)

]
~k

= (2y − xy)~i+ (yz − x2)~k .

1.2 Line Integrals

In this section we are now going to introduce a new kind of integral, the line
integrals. A line integral (sometimes called a path integral) of a scalar-valued
function can be thought of as a generalization of the one-variable integral of
a function over an interval, where the interval can be shaped into a curve. A
simple analogy that captures the essence of a scalar line integral is that of
calculating the mass of a wire from its density. A line integral gives us the
ability to integrate multivariable functions and vector fields over arbitrary
curves in a plane or in space. There are two types of line integrals: scalar
line integrals and vector line integrals. Scalar line integrals are integrals of a
scalar function over a curve in a plane or in space. Vector line integrals are
integrals of a vector field over a curve in a plane or in space.

Since line integrals are integrals of a function over a curve, in the following
we will assume that the curve is smooth, and is given by the parametric
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equations, x = x(t), y = y(t), z = z(t), , a ≤ t ≤ b . We will often want to
write the parameterizations of the curve as a vector function. In this case
the curve is given by,

~r(t) = x(t)~i+ y(t)~j + z(t)~k, a ≤ t ≤ b .

Scalar line integrals. This type of integral we also call it line integral
of f with respect to arc length.

For a formal description of a scalar line integral, let C be a smooth curve

in space given by the parameterization ~r(t) = x(t)~i + y(t)~j + z(t)~k, a ≤
t ≤ b . Let f = f(x, y, z) be a function with a domain that includes curve
C. To define the integral we begin as most definitions of an integral begin:
we chop the curve into small pieces. Partition the parameter interval [a, b]
into n subintervals [ti, ti+1] where t0 = a and tn = b . Let t∗i be a value
in the subinterval [ti, ti+1]. We denote the endpoints ~r(t0), ~r(t1), . . . , ~r(tn)
with P0, P1, . . . , Pn, see figure 1.5. Points Pi divide the curve C into pieces
C0, C1, . . . , Cn, with length 4s0,4s1, . . . ,4sn. At the end, we evaluate the
function for the point P ∗i , multiply with 4si, and sum for 1 ≤ i ≤ n .

Figure 1.5:

Definition 1.2.1. Let f be a function with a domain that includes the smooth
curve C that is parameterized by ~r(t) = x(t)~i + y(t)~j + z(t)~k, a ≤ t ≤ b .
The scalar line integral of f along C is:∫

C

f(x, y, z)ds = lim
n→∞

n∑
i=1

f(P ∗i )4si ,

if this limit exists and 4si and P ∗i are defined as before.



1.2. LINE INTEGRALS 11

If f is a continuous function on a smooth curve C then the integral exists.
Next, we will show how to evaluate the scalar line integrals.

Theorem 1.2.1. Let f be a continuous function with a domain that includes
the smooth curve C with parameterizations ~r(t) = x(t)~i+y(t)~j+z(t)~k, a ≤
t ≤ b . Then∫

C

f(x, y, z)ds =

∫ b

a

f(x(t), y(t), z(t))
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt .

Example 1.2.1. Find

∫
C

(x2 +y2 +z2)ds where C is given by x = cos t , y =

sin t , z = t for 0 ≤ t ≤ 2π, from (1, 0, 0) to (1, 0, 2π) .

The curve C is given of figure 1.6. We have:

Figure 1.6:

∫
C

(x2 + y2 + z2)ds =

∫ 2π

0

(cos2 t+ sin2 t+ t2)
√

(− sin t)2 + (cos t)2 + 12 dt

=

∫ 2π

0

(1 + t2)
√

2 dt = 2
√

2π(1 + 4π2/3) .

Now that we can evaluate line integrals, we can use them to calculate arc

length. If f(x, y, z) = 1 then the arc length of C is given by

∫
C

ds .

Example 1.2.2. Find the length of a wire with parameterization ~r(t) =

(3t+ 1)~i+ (4− 2t)~j + (5 + 2t)~k, 0 ≤ t ≤ 4 .
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We have: ∫
C

ds =

∫ 4

0

√
(3)2 + (−2)2 + 22 dt

=

∫ 4

0

√
17 dt = 4

√
17 .

Since 4si > 0 , when we switch the direction of the curve the line integral
(with respect to arc length) will not change. The following property hold:∫
C
f(x, y, z)ds =

∫
−C f(x, y, z)ds . The line integral has the following proper-

ties: ∫
C

(f ± g)(x, y, z)ds =

∫
C

f(x, y, z)ds±
∫
C

g(x, y, z)ds∫
C

kf(x, y, z)ds = k

∫
C

f(x, y, z)ds , for a constant k .

Evaluation of line integrals over piecewise smooth curves is a relatively simple
thing to do. All we do is evaluate the line integral over each of the pieces
and then add them up. The line integral for some function over a piecewise
curve would be∫

C

f(x, y, z)ds =

∫
C1

f(x, y, z)ds+

∫
C2

f(x, y, z)ds .

A mass of a wire. Scalar line integrals have many applications. They
can be used to calculate the length or mass of a wire, the surface area of a
sheet of a given height, or the electric potential of a charged wire given a
linear charge density. Here, we calculate the mass of a wire using a scalar
line integral.

Suppose that a piece of wire is modeled by curve C in space. The mass per
unit length (the linear density) of the wire is a continuous function ρ(x, y, z).
We can calculate the total mass of the wire using the scalar line integral∫
C
ρ(x, y, z)ds .

Example 1.2.3. Calculate the mass of a spring in the shape of a curve

parameterized by ~r(t) = t~i + 2 cos t~j + 2 sin t~k, 0 ≤ t ≤ π

2
, with a density

function given by ρ(x, y, z) = ex + yz .
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To calculate the mass of the spring, we must find the value of the scalar
line integral

∫
C
ρ(x, y, z)ds . We have∫

C

ρ(x, y, z)ds =

∫ π/2

0

(ex + yz)
√
x′2(t) + y′2(t) + z′2(t)dt =

=

∫ π/2

0

(et + 4 sin t cos t)
√

12 + (−2 sin t)2 + (2 cos t)2dt =

=
√

5

∫ π/2

0

(et + 4 sin t cos t)dt =
√

5(eπ/2 + 1) .

Vector line integrals. The second type of line integrals are vector line
integrals, in which we integrate along a curve through a vector field. Let
~F (x, y, z) = M(x, y, z)~i + N(x, y, z)~j + P (x, y, z)~k, be a continued vector
field in R3 that represents a force on a particle, and let C be a smooth curve
in R3 contained in the domain of ~F . How would we compute the work done
by ~F in moving a particle along C? We need a vector line integral.

Definition 1.2.2. Let f be a function with a domain that includes the smooth
curve C that is parameterized by ~r(t) = x(t)~i + y(t)~j + z(t)~k, a ≤ t ≤ b .

The vector line integral of ~F along C is:∫
C

~F · d~r(t) =

∫ b

a

~F (~r(t))~r ′(t)dt . (1.3)

In this notation we have ~r ′(t) = x′(t)~i+ y′(t)~j + z′(t)~k.

Therefore, the work done by ~F in moving the particle in the positive
direction along C is defined as:

W =

∫
C

~F · d~r(t) . (1.4)

The vector line integral has the following properties:∫
−C

~F · d~r(t) = −
∫
C

~F · d~r(t) ;∫
C

(~F + ~G) · d~r(t) =

∫
C

~F · d~r(t) +

∫
C

~G · d~r(t)∫
C

k ~F · d~r(t) = k

∫
C

~F · d~r(t) , for a constant k .
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Similar as in the scalar line integrals, the evaluation of vector line integrals
over piecewise smooth curves would be∫

C

~F · d~r(t) =

∫
C1

~F · d~r(t) +

∫
C2

~F · d~r(t) .

Example 1.2.4. Find the value of the vector line integral
∫
C
~F · d~r(t) where

C is the circle parameterized with ~r(t) = cos t~i + sin t~j , 0 ≤ t ≤ π , and
~F = −y~i+ x~j .

Note that in this example the vector field id two dimensional. Using (1.3)
we have:∫

C

~F · d~r(t) =

∫ b

a

~F (~r(t))~r ′(t)dt

=

∫ π

0

(− sin t~i+ cos t~j) · (− sin t~i+ cos t~j)dt =

=

∫ π

0

(sin2 t+ cos2 t)dt =

∫ π

0

dt = π.

We can rewrite the left hand side of equation (1.3) so that it becomes:∫
C

~F · d~r(t) =

∫
C

Mdx+Ndy + Pdz .

This is another standard notation for the vector line integral.

Example 1.2.5. Find

∫
C

x2ydx+ (y − z)dy + xzdz where:

(a) C is the curve given with the equations ~r(t) =~i+ t2~j + t~k , 0 ≤ t ≤ 2;

(b) C is the line from (1, 0, 0) to (1, 4, 2).

(a) For ~r(t) =~i+t2~j+t~k we have x(t) = 1, y(t) = t2 i z(t) = t, and dx = 0·dt,
dy = 2tdt, dz = dt. So

x2ydx+ (y − z)dy + xzdz = 12t2 · 0 · dt+ (t2 − t)2tdt+ 1 · tdt .

For the line integral we have:∫
C

x2ydx+ (y − z)dy + xzdz =

∫ 2

0

(2t3 − 2t2 + t)dt =
14

3
.
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(b) The line passing trough (1, 0, 0) and (1, 4, 2) has the parametric equations
x(t) = 1, y(t) = 4t and z(t) = 2t where 0 ≤ t ≤ 1, and dx = 0 · dt, dy = 4dt,
dz = 2dt. We have

x2ydx+ (y − z)dy + xzdz = 124t · 0dt+ (4t− 2t)4dt+ 2t · 2dt .

For the line integral in this case we have:∫
C

x2ydx+ (y − z)dy + xzdz =

∫ 1

0

12tdt = 6 .

Both curves are given of figure 1.7. They start at the same point (1, 0, 0),
and end at the same point (1, 4, 2). But the value of the integral is not the
same.

Figure 1.7:

A work done by a force. Vector line integrals are extremely useful
in physics. They can be used to calculate the work done on a particle as it
moves through a force field, or the flow rate of a fluid across a curve. Here
we calculate the work done by a force using a vector line integral.

Example 1.2.6. How much work is required to move an object in vector
force field ~F = yz~i+ xy~j + xz~k along path ~r(t) = t2~i+ t~j + t4~k, 0 ≤ t ≤ 1 .

From the equation (1.4) we have:

W =

∫
C

~F · d~r(t) =

∫ 1

0

(yz~i+ xy~j + xz~k) · (2t~i+~j + 4t3~k)dt =

=

∫ 1

0

(t5 · 2t+ t3 + t6 · 4t3)dt =
131

140
.
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Line integrals as circulation. The vector line integral introduction
explains how the line integral

∫
C
~F · d~r(t) of a vector field ~F over an oriented

curve C ”adds up” the component of the vector field that is tangent to the
curve. In this sense, the line integral measures how much the vector field is
aligned with the curve. If the curve C is a closed curve, then the line integral
indicates how much the vector field tends to circulate around the curve C. In
fact, for an oriented closed curve C, we call the line integral the “circulation”
of ~F around C, see figure 1.8. To emphasize that the integral is around a
closed curve we use the

∮
notation.

∮
C

~F · d~r(t) = circulation of ~F over C .

Figure 1.8:

Example 1.2.7. Find the circulation of the vector field ~F = y~i − x~j over

the ellipse
x2

4
+
y2

9
= 1 .

First we write the ellipse with its vector form (using parametric equa-
tions): ~r(t) = 2 cos t~i + 3 sin t~j 0 ≤ t ≤ 2π . To find the circulation we just
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evaluate the vector line integral. We got:∮
C

~F · d~r(t) =

∫ 2π

0

(y~i− x~j) · (−2 sin t~i+ 3 cos t~j)dt =

=

∫ 2π

0

(3 sin t~i− 2 cos t~j) · (−2 sin t~i+ 3 cos t~j)dt

=

∫ 2π

0

(−6 sin2 t− 6 cost) = −12π .

As shown in figure 1.8, the vector field appears to circulate in the clockwise
direction, tending to point in the opposite direction of the orientation of the
curve, and we got negative circulation.

1.3 Conservative Vectors Fields

A vector field ~F is called a conservative vector field if there exists a scalar
function f such that ~F = ∇f . If ~F is a conservative vector field then the
function, f , is called a potential function for ~F . All this definition is saying is
that a vector field is conservative if it is also a gradient vector field for some
function.

For instance the vector field ~F = y~i + x~j is a conservative vector field
with a potential function of f(x, y) = xy because ∇f = y~i+ x~j = ~F .

Example 1.3.1. Is f(x, y, z) = x2yz−sin(xy) a potential function for vector

field ~F (x, y, z) =

 2xyz − y cos(xy)
x2z − x cos(xy)

x2y

 ?

We need to confirm whether ~F = ∇f . We have

f ′x = 2xyz − y cos(xy)

f ′y = x2z − x cos(xy)

f ′z = x2y .

Therefore, ∇f = ~F , and f is a potential function for ~F .
If ~F is a conservative vector field, then there is at least one potential

function f such that ∇f = ~F . But, could there be more than one potential
function? If so, is there any relationship between two potential functions for
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the same vector field? It is proved that if ~F is a conservative vector field
on an open and connected domain and let f and g are functions such that
∇f = ~F , and ∇g = ~F , then there is a constant C such that f = g+C. So, for
a conservative vector field, the potential functions differ for a constant. In a
way there is an analogy between the potential functions and the antiderivative
functions.

Many physical force fields (vector fields) that you are familiar with are
conservative vector fields. The term comes from the fact that some kind of
energy is conserved by these force fields. The important consequence for us,
though, is that as you move an object from point A to point B, the work
performed by a conservative force field does not depend on the path taken
from point A to pointB. For this reason, we often refer to such vector fields as
path-independent vector fields. Path-independent and conservative are just
two terms that mean the same thing. Not all vector fields are conservative.
If a vector field is not path-independent, we call it path-dependent (or non-

conservative). For example, the vector field ~F = x2y~i + (y − z)~j + xz~k
considered in the example 1.2.5 is path depended.

Next, we give the fundamental theorem for line integrals.

Theorem 1.3.1. Suppose that C is a smooth curve given by ~r(t), a ≤ t ≤ b.
Also suppose that f is a function whose gradient vector ∇f is continuous on
C. Then ∫

C

~∇f · d~r(t) = f(~r(b))− f(~r(a)) .

We use this theorem to make a connection with the conservative vector
fields. We know that if ~F is a conservative vector field, there is a potential
function f such that ∇f = ~F . Then:∫

C

~F · d~r(t) =

∫
C

~∇f · d~r(t) = f(~r(b))− f(~r(a)) .

In other words, just as with the Fundamental Theorem of Calculus, comput-
ing the line integral

∫
C
~F · d~r(t) where ~F is a conservative vector field is a

two steps process:

1. Find a potential function for ~F (the ”antiderivative”;)

2. Compute the value of f at the endpoints of C and calculate their dif-
ference.
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The Fundamental Theorem for Line Integrals has two important conse-
quences. The first consequence is that if ~F is conservative and C is a closed

curve, then the circulation of ~F along C is zero—that is

∫
C

~F · d~r(t) = 0 .

The second important consequence of the Fundamental Theorem for Line
Integrals is that line integrals of conservative vector fields are independent of
path—meaning, they depend only on the endpoints of the given curve, and
do not depend on the path between the endpoints.

Finally, in this section we want to look at two questions. First, given a
vector field ~F is there any way of determining if it is a conservative vector
field? Secondly, if we know that ~F is a conservative vector field how do we
go about finding a potential function for the vector field? To answer the first
quaestion we have the following theorem.

Theorem 1.3.2. If ~F is defined on R3 whose components have continuous
first order partial derivative and curl ~F = ~0, then ~F is a conservative vector
field.

In the following example using Theorem 1.3.2 we will prove that ~F is
conservative vector field, and we will illustrate the procedure for finding its
potential f .

Example 1.3.2. Show that

~F (x, y, z) = 2xy~i+ (x2 + sin z)~j + (y cos z + 2)~k

is conservative vector field, and find its potential.

To show that ~F is conservative vector field first we find curl ~F .

curl~F = ∇× ~F

=

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
×
(

= 2xy~i+ (x2 + sin z)~j + (y cos z + 2)~k
)

=

[
∂

∂y
(y cos z + 2)− ∂

∂z
(x2 + sin z)

]
~i−

[
∂

∂x
(y cos z + 2)− ∂

∂z
(2xy)

]
~j +

+

[
∂

∂x
(x2 + sin z)− ∂

∂y
(2xy)

]
~k

= (cos z − cos z)~i+ (0− 0)~j + (2x− 2x)~k = ~0 .
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Since curl ~F = 0, from Theorem 1.3.2 we have that ~F is conservative
vector field. Let us find a potential f such that

~F = ∇f =
∂f

∂x
~i+

∂f

∂y
~j +

∂f

∂z
~k .

From these equations we have

∂f

∂x
= 2xy ,

∂f

∂y
= x2 + sin z ,

∂f

∂z
= y cos z + 2 .

Integrating in respect to x the first equation we have

f(x, y, z) =

∫
2xydx = x2y + g(y, z) .

Next, we take a partial derivative with respect to y and we have

∂f

∂y
=

∂

∂y
(x2y + g(y, z)) = x2 +

∂

∂y
(g(y, z)) = x2 + sin z .

For g(y, z) we got g(y, z) =
∫

sin zdy = y sin z+k(z) . So, f will be f(x, y, z) =
x2y+ g(y, z) = x2 + y sin z + k(z) , and now we take a partial derivative of f
with respect to z. We have

∂f

∂z
=

∂

∂z
(x2 + y sin z + k(z)) = y cos z + k′(z) = y cos z + 2 .

From k′(z) = 2 we got k(z) = 2z + C and f is found:

f(x, y, z) = x2y + y sin z + k(z) = x2 + y sin z + 2z + C .

Example 1.3.3. Show that the gravitational force vector field

~F =
−Gx

(x2 + y2 + z2)3/2
~i+

−Gy
(x2 + y2 + z2)3/2

~j +
−Gz

(x2 + y2 + z2)3/2
~k

is conservative and find its potential.



1.4. SURFACE INTEGRALS 21

1.4 Surface Integrals

We have seen that a line integral is an integral over a path in a plane or in
space. However, if we wish to integrate over a surface (a two-dimensional
object) rather than a path (a one-dimensional object) in space, then we need
a new kind of integral that can handle integration over objects in higher
dimensions. We can extend the concept of a line integral to a surface integral
to allow us to perform this integration. Let’s start off with a sketch of the
surface S since the notation can get a little confusing once we get into it.
Here, on figure 1.9 is a sketch of some surface S. In this case the surface S

Figure 1.9:

lies above some region D that lies in the x0y plane. Also note that we could
just as easily looked at a surface S that was in front of some region D in the
y0z plane or the x0z plane.

Surface integrals are important for the same reasons that line integrals
are important. They have many applications to physics and engineering,
and they allow us to develop higher dimensional versions of the Fundamental
Theorem of Calculus. Surface integrals are similar to line integrals. Just as
there are two types of integrals over curves (line integrals of scalar functions
and of vector fields) there are two types of surface integrals: surface integrals
of scalar functions, and surface integrals of vector fields. The surface integral
of a scalar function is a simple generalization of a double integral. Like the
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line integral of vector fields, the surface integrals of vector fields will play a
big role in the fundamental theorems of vector calculus.

Surface integral of a scalar-valued function. The definition of a
surface integral follows the definition of a line integral quite closely. For
scalar line integrals, we chopped the domain curve into tiny pieces, chose a
point in each piece, computed the function at that point, and took a limit
of the corresponding Riemann sum. For scalar surface integrals, we chop
the domain region (no longer a curve) into tiny pieces and proceed in the
same fashion. Let S be a piecewise smooth surface with parameterizations
~r(u, v) = x(u, v)~i + y(u, v)~j + z(u, v)~k, with parameter domain D and let

f = f(x, y, z) be a function with a domain that contains S. We can assume
that D is a rectangle, and divide it into subrectangles Dij, with horizontal
width4u and vertical lenght4v. This division of D into subrectangles gives
a corresponding division of S into pieces Sij. Choose point Pij in each piece
Sij, evaluate f at Pij, multiply the area of Sij and form the Rieman sum:

n∑
i=1

n∑
i=1

f(Pij)4Sij .

To define a surface integral of a scalar-valued function, we let the areas of
the pieces of S shrink to zero by taking a limit.

Definition 1.4.1. The surface integral of a scalar-valued function of f over
a piecewise smooth surface S is:∫∫

S

f(x, y, z)dσ = lim
n→∞

n∑
i=1

n∑
i=1

f(Pij)4Sij .

Scalar surface integrals are difficult to compute from the definition, just
as scalar line integrals are. To develop a method that makes surface integrals
easier to compute, we approximate surface areas 4Sij with small pieces of a
tangent plane. We have:

4Sij ≈ |~ru ′ × ~rv ′|4u4v .

The surface integral is∫∫
S

f(x, y, z)dσ =

∫∫
D

f( ~r(u, v))|~ru ′ × ~rv ′|dP .
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Let consider the case when the surface S is given with the equation z =
g(x, y). Then we can parameterize it with the equations x = u and y = v,

then ~r(u, v) = u~i+ v~j + g(u, v)~k . We have

|~ru ′ × ~rv ′| =

∣∣∣∣∣∣
∣∣∣∣∣∣
~j ~j ~k
1 0 g′u
0 1 g′v

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣−g′u~i− g′v~j + ~k
∣∣∣ =

√
(g′u)

2 + (g′v)
2 + 1 ,

and in this case we can use the following equation to find a surface integral
of a scalar-valued function:∫∫

S

f(x, y, z)dσ =

∫∫
D

f(x, y, g(x, y))
√

(g′x)
2 + (g′y)

2 + 1dP .

Example 1.4.1. Find

∫∫
S

zdσ , where S is the surface z =
√

4− x2 − y2 .

The surface S is half of a sphere with r = 2, see figure 1.10. The region

Figure 1.10:

D in the x0y plane x2 + y2 ≤ 4, and we have:∫∫
S

zdσ =

∫∫
D

√
4− x2 − y2{

(
∂
√

4− x2 − y2
∂x

)2

+

(
∂
√

4− x2 − y2
∂y

)2

+ 1}1/2dP

=

∫ 2

−2

∫ √4−x2
−
√
4−x2

√
4− x2 − y2

[
x2

4− x2 − y2
+

y2

4− x2 − y2
+ 1

]1/2
dydx

=

∫ 2

−2

∫ √4−x2
−
√
4−x2

2dydx .
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Using polar coordinates we find:∫∫
S

zdσ = 2

∫ 2π

0

∫ 2

0

rdrdθ = 8π .

A mass of a sheet. Scalar surface integrals have several real-world
applications. Recall that scalar line integrals can be used to compute the
mass of a wire given its density function. In a similar fashion, we can use
scalar surface integrals to compute the mass of a sheet given its density
function. If a thin sheet of metal has the shape of surface S and the density
of the sheet at point (x, y, z) is ρ(x, y, z) then mass m of the sheet is:

m =

∫∫
S

ρ(x, y, z)dσ .

Example 1.4.2. A piece of metal has a shape that is modeled by paraboloid
z = x2 + y2, 0 ≤ z ≤ 4 , and the density of the metal is given by ρ(x, y, z) =
z + 1 . Find the mass of the piece of metal.

To find the mass of the piece of metal, we will find the scalar surface
integral: m =

∫∫
S
ρ(x, y, z)dσ =

∫∫
S
(z + 1)dσ . We have:∫∫

S

(z + 1)dσ =

∫∫
D

(x2 + y2 + 1){
(
∂(x2 + y2)

∂x

)2

+

(
∂(x2 + y2)

∂y

)2

+ 1}1/2dP

=

∫ 2

−2

∫ √4−x2
−
√
4−x2

(x2 + y2 + 1)
[
4(x2 + y2) + 1

]1/2
dydx =

=
1

20
(−3 + 187

√
17)π .

Surface integral of a vector field. The line integral of a vector field
~F could be interpreted as the work done by the force field ~F on a particle
moving along the path. The surface integral of a vector field ~F actually has a
simpler explanation. If the vector field ~F represents the flow of a fluid, then
the surface integral of ~F will represent the amount of fluid flowing through
the surface (per unit time).

The amount of the fluid flowing through the surface per unit time is also
called the flux of fluid through the surface. For this reason, we often call the
surface integral of a vector field a flux integral.



1.4. SURFACE INTEGRALS 25

If water is flowing perpendicular to the surface, a lot of water will flow
through the surface and the flux will be large. On the other hand, if water
is flowing parallel to the surface, water will not flow through the surface,
and the flux will be zero. To calculate the total amount of water flowing
through the surface, we want to add up the component of the vector ~F that
is perpendicular to the surface. The direction of this perpendicular vector is
very important since it gives the orientation of the surface S. When we define
a surface integral of a vector field, we need the notion of an oriented surface.
An oriented surface is given an ”upward” or ”downward” orientation. Let us
explain this more accurately.

Let S be a smooth surface. For any point (x, y, z) on S, we can identify
two unit normal vectors ~n and −~n. If it is possible to choose a unit normal
vector ~n at every point (x, y, z) on S so that ~n varies continuously over S,
then S is ”orientable” surface. Such a choice of unit normal vector at each
point gives the orientation of a surface S. If you think of the normal field as
describing water flow, then the side of the surface that water flows toward
is the ”negative” side and the side of the surface at which the water flows
away is the ”positive” side. Informally, a choice of orientation gives S an
”outer” side and an ”inner” side (or an ”upward” side and a ”downward”
side), just as a choice of orientation of a curve gives the curve ”forward” and
”backward” directions.

For example, closed surfaces such as spheres are orientable: if we choose
the outward normal vector at each point on the surface of the sphere, then the
unit normal vectors vary continuously. This is called the positive orientation
of the closed surface, see figure 1.11. We also could choose the inward normal
vector at each point to give an ”inward” orientation, which is the negative
orientation of the surface.

Let ~n be a unit normal vector to the surface. The choice of normal vector
orients the surface and determines the sign of the fluid flux. The flux of
fluid through the surface is determined by the component of ~F that is in the
direction of ~n, i.e. by ~F · ~n .

Now, we need to discuss how to find the unit normal vector if the surface

is given perimetrically as, ~r(u, v) = x(u, v)~i+ y(u, v)~j+ z(u, v)~k. In this case
the vector ~ru

′×~rv ′ will be normal to the tangent plane at a particular point.
But if the vector is normal to the tangent plane at a point then it will also
be normal to the surface at that point. So, this is a normal vector. In order
to guarantee that it is a unit normal vector we will also need to divide it by
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Figure 1.11:

its magnitude.
So, in the case of parametric surfaces one of the unit normal vectors will

be,

~n =
~ru
′ × ~rv ′

|~ru ′ × ~rv ′|
.

We will need to look at this once it’s computed and determine if it points
in the correct direction or not. If it doesn’t then we can always take the
negative of this vector and that will point in the correct direction.

Let us now have a surface given with the equation z = g(x, y) . Then,
as before expalined, we can parameterize it with the equations x = u and

y = v, then ~r(u, v) = u~i+ v~j + g(u, v)~k , and ~ru
′ × ~rv ′ = −g′u~i− g′v~j +~k , so

for the ~n we have:

~n =
~ru
′ × ~rv ′

|~ru ′ × ~rv ′|
=
−g′x~i− g′y~j + ~k√
(g′x)

2 + (g′y)
2 + 1

.

We finally have the definition of the surface integral of a vector field.

Definition 1.4.2. Let ~F be a continuous vector field with a domain that
contains oriented surface S with unit normal vector ~n. The surface integral
of ~F over S is ∫∫

S

~F · d~S =

∫∫
S

~F · ~ndσ .
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The second surface integral in the above definition 1.4.2 is a surface inte-
gral of a scalar valued function, and its connection with a double integral is
given by the equation:∫∫

S

~F · ~ndσ =

∫∫
D

~F · (~ru ′ × ~rv ′) dP ,

where surface is given perimetrically as, ~r(u, v) = x(u, v)~i+y(u, v)~j+z(u, v)~k.
So it is easier to find the surface integral when S is given by its parametric
equations.

In the other case, let the surface be given by z = g(x, y) In this case let’s

also assume that the vector field is given by ~F = M~i+N~j + P~k , , and that
the orientation that we are after is the ”upwards” orientation. Under all of
these assumptions the surface integral of ~F over S is:∫∫

S

~F · d~S =

∫∫
S

~F · ~ndσ =

=

∫∫
D

(M~i+N~j + P~k) ·

 −g′x~i− g′y~j + ~k√
(g′x)

2 + (g′y)
2 + 1


√

(g′x)
2 + (g′y)

2 + 1dP =

=

∫∫
D

(
−Mg′x −Ng′y + P

)
dP .

Now, remember that this assumed the ”upward” orientation. If we would
needed the ”downward” orientation, then we would need to change the signs
on the normal vector. This would in turn change the signs on the integrand
as well. So, we really need to be careful here when using this formula. In
general, it is best to rederive this formula as you need it.

Example 1.4.3. Let S be the cylinder of radius 3 and height 5 given by
x2 + y2 = 9 , 0 ≤ z ≤ 5 . Let ~F be a vector field, ~F = 2x~i+ 2y~j + 2z~k . Find
the integral of ~F over S, where S is the positive side outside of the cylinder,
i.e., we will use the outward pointing normal vector, see figure 1.12.

To find the integral, first we make a parametrization of the cylinder. We

have ~r(u, v) = 3 cosu~i+ 3 sinu~j + v~k, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 5 .
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Figure 1.12:

Next we find the normal vector to the surface ~ru
′ × ~rv ′:

~ru
′ × ~rv ′ =

∣∣∣∣∣∣
~i ~j ~k

−3 sinu 3 cosu 0
0 0 1

∣∣∣∣∣∣ = 3 cosu~i+ 3 sinu~j ,

and as shown in the below figure 1.13 it is an outward pointing normal. We

Figure 1.13:



1.4. SURFACE INTEGRALS 29

can now calculate total flux.∫∫
S

~F · d~S =

∫∫
S

~F · ~ndσ =

=

∫∫
S

(
2x~i+ 2y~j + 2z~k

)
·
(

3 cosu~i+ 3 sinu~j
) 1

3
dσ =

=

∫∫
D

(
6 cosu~i+ 6 sinu~j + 2v~k

)
·
(

3 cosu~i+ 3 sinu~j
) 1

3
· 3dP =

=

∫∫
D

(
18 cos2 u+ 18 sin2 u

)
dP =

=

∫ 2π

0

∫ 5

0

18dvdu = 180π .

Example 1.4.4. Let S be a disk of radius 6 centered around the z axis in
plane z = −4, oriented with an upward pointing normal. Let a magnetic field
be given by ~F = (x2 + y2)~k . What is total magnetic flux through disk?

Let us first parametrize the given surface S. We have ~r(u, v) = v cosu~i+

v sinu~j + (−4)~k, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 6 . Next we find the normal vector
to the surface ~ru

′ × ~rv ′:

~ru
′ × ~rv ′ =

∣∣∣∣∣∣
~i ~j ~k

−v sinu v cosu 0
cosu sinu 1

∣∣∣∣∣∣ = −v~k .

The normal vector is downward pointing, but we need to orient S with up-
ward normal vector. For correct orientation, we must choose the normal
vector ~n = v~k .

The total magnetic flux through the disk will be:∫∫
S

~F · d~S =

∫∫
S

~F · ~ndσ =

=

∫∫
S

(
(x2 + y2)~k

)
·
(
v~k
) 1

|v|
dσ =

=

∫∫
D

(
(v2 cos2 u+ v2 sin2 u)~k

)
·
(
v~k
) 1

|v|
· |v|dP =

=

∫∫
D

(
v3
)
dP =

=

∫ 2π

0

∫ 6

0

(
v3
)
dvdu = 648π .
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Calculating Mass Flow Rate. If ~F represent a velocity field (with
units of meters per second) of a fluid with constant density ρ, then the mass
flow rate of the fluid across the surface S is given with the flux integral∫∫

S

ρ~F ·~ndσ . If we want to find the flow rate (measured in volume per time)

instead, we can use flux integral

∫∫
S

~F · ~ndσ , which leaves out the density.

Both mass flux and flow rate are important in physics and engineering.
Mass flux measures how much mass is flowing across a surface; flow rate
measures how much volume of fluid is flowing across a surface.

Calculating Heat Flow. In addition to modeling fluid flow, surface
integrals can be used to model heat flow. Suppose that the temperature
at point (x, y, z) in an object is T (x, y, z). Then the heat flow is a vector
field proportional to the negative temperature gradient in the object. To
be precise, the heat flow is defined as vector field ~F = −k∇~T , where the
constant k is the thermal conductivity of the substance from which the object
is made (this constant is determined experimentally). The rate of heat flow
across surface S in the object is given by the flux integral∫∫

S

~F · d~S =

∫∫
S

−k∇~Td~S .




